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Abstract: Lyme borreliosis is the leading tick-related illness in Europe, caused by Borrelia Burgdorferi
s.1. Lower Saxony, Germany, including its capital, Hanover, has a higher proportion of infected ticks
than central European countries, justifying a research focus on the potential human consequences.
The current knowledge gap on human incident infections, particularly in Western Germany,
demands serological insights, especially regarding a potentially changing climate-related tick
abundance and activity. We determined the immunoglobulin G (IgG) and immunoglobulin M
(IgM) serostatuses for 8009 German National Cohort (NAKO) participants from Hanover, examined
in 2014-2018. We used an enzyme-linked immunosorbent assay (ELISA) as the screening and a line
immunoblot as confirmation for the Borrelia Burgdorferi sl. antibodies. We weighted the
seropositivity proportions to estimate general population seropositivity and estimated the force of
infection (FOI). Using logistic regression, we investigated risk factors for seropositivity.
Seropositivity was 3.0% (IgG) and 2.1% (IgM). The FOI varied with age, sharply increasing in
participants aged >40 years. We confirmed advancing age and male sex as risk factors. We reported
reduced odds for seropositivity with increasing body mass index and depressive symptomatology,
respectively, pointing to an impact of lifestyle-related behaviors. The local proportion of
seropositive individuals is comparable to previous estimates for northern Germany, indicating a
steady seroprevalence.

Keywords: borrelia burgdorferi; lyme disease; tick-borne diseases; seroepidemiologic studies;
German National Cohort; force of infection; borrelia infections

1. Introduction

Lyme borreliosis (LB), also known as Lyme disease, is the most common tick-borne
disease in Europe, with Ixodes ricinus as the predominant tick species [1,2]. Spirochaete
bacteria of the Borrelia burgdorferi sensu lato (B. burgdorferi s.l.)—a complex transmitted
from ticks to humans— can cause multisystem disease with several states of manifestation.
In the early stages of the infection, erythema migrans, a skin rash circling the tick bite, is
the most frequent symptom. Other clinical manifestations at advanced stages are
neuroborreliosis or Lyme arthritis [3]. However, 5% of tick-bitten humans seroconvert,
and 2% of the tick-bitten develop clinical disease [4].
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In Germany, LB is a notifiable infection in nine of sixteen federal states, covering
eastern Germany, Bavaria, Rhineland-Palatinate, and Saarland as the only German states
in the western region; this hampers nationwide monitoring of cases for risk assessment
and subsequent public health measures [5]. In the nine states with mandatory notification,
the annual mean incidence from 2013 to 2017 was 33 notified cases per 100,000 persons,
with a seasonal spike from June to August and a stable incidence over the years [6].
Akmatov et al. reported 429 LB diagnoses per 100,000 insured persons in 2019, based on
recent health insurance data [7]. Both notification and health insurance data indicate
regional differences in disease burden caused by LB. This heterogeneity is also supported
by monitoring data, suggesting a variation in tick density, distribution, and infection
status with Borrelia spp. within Germany [8-11]. Lower Saxony, a northern German
federal state, seems to have a higher average proportion of infected ticks (30.6%) than
central European countries taken together (19.3%) [8,12]. For Hanover, Lower Saxony, in
2018 and 2019, the proportion of Borrelia spp.-infected ticks was 31.1% in mixed forests,
32.9% in urban areas, and 35.5% in broadleaved forests [8]. Retrospectively, Hanover’s
proportion of infected ticks remained constant from 2005 to 2015 [13,14]. However, the
tick density seems to have increased between 2017 and 2018 [15]. Because of climate
change, the tick season will potentially extend from currently March to October [6,16] to
include the fall and winter months due to higher weekly mean temperatures [17], enabling
tick activity if above 7 °C [18]. Considering Lower Saxony, the average yearly temperature
has increased in the last decades from 8.6 °C in 1961-1990 to 9.3 °C in 1981-2010 [19]. In
addition, the likelihood of human exposure might elevate due to more outdoor activities
with rising air temperatures [20].

Previous research considering the notification and serological data suggests several
risk factors for human seropositivity, with advancing age and male sex as influential
factors [21-24]. However, surveillance and health insurance data display a more complex
representation of the age distribution: a bimodal distribution of cases over age with an
elevated incidence and diagnoses in children aged 5 to 9 years and adults aged 50 to 69
[6,16,25]. Compared with females, males are more affected in childhood and less in
adulthood. Furthermore, existing research has not yet clarified the role of socioeconomic
status (SES) conclusively, as the studies use a different methodology. For example, the use
of income on the neighborhood/municipality level versus the use of education level on
the individual level found differing results [24,26-30]. The interrelationship between SES,
living environment, profession, and lifestyle, including recreational activity, may affect
tick exposure, and, therefore, past infections are reflected in part by the serostatus.

We derived three epidemiological objectives in order to fill the existing research gaps:
First, we aimed to estimate B. burgdorferi s.1. seropositivity in the general adult population
of Hanover—a city with no active public health surveillance of LB or recent serosurveys
but with abundant tick data, as mentioned above. Here, a comprehensive serological
study can offer insights into local seropositivity and a baseline for future serosurveys,
considering potential climate-related exposure shifts. Second, we aimed to estimate the
serology-based force of infection (FOI), the rate at which the susceptible acquire an
infection [31] with B. burgdorferi s.l., to provide a different perspective on the age
distribution and risk of seropositivity. Finally, we used extensive German National
Cohort (NAKO) data to evaluate the acknowledged and debated risk factors.

2. Materials and Methods
2.1. Study Sample

We investigated data from 8009 German National Cohort (NAKO) participants
examined at the study center in Hanover between October 2014 and November 2018 [32].
The study center invited people aged 20 to 69 years randomly drawn into 10-year age
groups from population registries with primary residences in Hanover. We oversampled
the age groups 40 and above. After providing written informed consent, the participants
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underwent comprehensive standardized examinations, including health-related
interviews, self-administered questionnaires, physical and medical examinations, and
provided biomaterials, including a 65 mL blood sample per participant drawn by a study
assistant. The sample collection and subsequent processing were subject to strict
standardization and took a maximum period of 2 h. All samples were aliquoted and
frozen at =80 °C at the Hanover Unified Biobank, located within the same building.
Eligibility for study participation was irrespective of their health condition, as long as the
invited participant was able to provide written informed consent, reach the study center
independently, and participate in most examinations. For travel expense compensation,
study personnel offered EUR 10 to each participant at the end of the examinations.

2.2. Blood Sample Analyses

A DIN EN ISO (German Institute for Standardization/International Standardization
Organization/European standard) 15,189 accredited and ISO 9001 certified contract
laboratory conducted the serological analyses of blood samples for immunoglobulin G
(IgG) and immunoglobulin M (IgM) antibodies against B. burgdorferi s.l. on our behalf. For
transport to the external laboratory in July 2020, the samples were packaged with dry ice,
and temperature logs ensured an adequate temperature during transportation. The
samples were stored at -20 °C at the laboratory before processing. The laboratory
performed a two-tier antibody testing procedure consisting of an enzyme-linked
immunosorbent assay (ELISA) as a screening test and a line blot immunoassay (line blot)
as a confirmatory test in case of positive or equivocal ELISA results, in line with the
current microbiologic-infectiologic quality standards (MiQ12) [33].

For the ELISA screening test, our contract laboratory used the “Borrelia afzelii and
VIsE IgG Europe ELISA” and “Borrelia afzelii IgM ELISA” kits, Virotech Diagnostics
GmbH, with a >99% sensitivity (IgG and IgM) and 97% (IgG) or 98.8% (IgM) specificity,
respectively. The antigens covered by these kits were the B. burgdorferi strain ZS7, B. garinii
strain PBr, and B. afzelii strain Pko.

The screening test returned a Virotech Unit (VU) value, an arbitrary antibody
quantification scale used for the initial classification of the samples as positive (VU > 11),
equivocal (VU <11 and VU 29), or negative (VU <9). Then, as a confirmatory test (line
blot) for the positive or equivocal ELISA results, our contract laboratory used the “WE225
Borrelia Europe plus TpN17 LINE IgG” and “WE224 Borrelia Europe LINE IgM” kits,
Virotech Diagnostics GmbH, with a >99.9% sensitivity and 98% specificity (IgG and IgM).
The antigen strains considered by these kits were the OpsC (p23) from B. afzelii, VISE
recombinant from B. burgdorferi B31, p39 (BmpA) recombinant from B. afzelii PKo, DbpA
(Pko) and DbpA (PBi, PBr, A14 S) from B. bavariensis PBi and B. garinii PBr, p58 (OppA-2)
recombinant from B. bavariensis PBi, and p83/100 recombinant from B. afzelii PKo. In
addition, the kits considered the strain EBV VCA-gpl25 (affinity purified) for the
exclusion diagnostics of Epstein-Barr virus.

2.3. Defining B. burgdorferi s.l. Seropositivity

We determined the IgG and IgM serostatuses for the B. burgdorferi s.1. antibodies by
applying three seropositivity algorithms independently:
1. A positive or equivocal screening test (ELISA) with a subsequent positive
confirmatory test (line blot), which corresponds to the current standard MiQ12 [33];
2. A positive screening test (ELISA) with a subsequent positive or equivocal
confirmatory test (line blot) or equivocal screening test with a positive confirmatory
test; also applied, e.g., in [22,23];
3. A positive screening test (ELISA); also applied, e.g., in [34,35].
In our work and analyses, we primarily use the definition corresponding to the

MiQ12 standard (definition 1) and report other definitions for comparability to relevant
studies from the literature. To estimate the seropositivity of the local general population
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in Hanover, we weighted our sample with regard to the local age and sex distribution
from the 2020 cohort-component-based population update of the 2011 census (obtained
from www.destatis.de and accessed on 6 May 2022) [36] using the iterative proportional
fitting (raking) method employing the R-package “survey” [37,38].

2.4. Force of Infection

We estimated the serology-based force of infection (FOI) to gain an additional
viewpoint on age distribution and infection risk. In our approach, the FOI reflects the
balance of seroconversion and seroreversion, reflecting the average change in the
seropositivity proportion of the population.

We considered those subjects aged 20-69 years and focused on IgG seropositivity.
Our estimation utilizes definition 1, i.e., the detection of antibodies against B. burgdorferi
s.l, corresponding to the MiQ 12 standard (Section 2.3., definition 1). We did not proceed
with an FOI calculation for the IgM class antibodies as a short-term marker for infection
due to the non-distinct duration of serum traceability [39], the low crude proportion of
IgM positives, and no indication of varying IgM seropositivity over age, as reported
before [24]. For the FOI calculation, we considered three models: Muench’s catalytic
model [40,41] with a constant FOI over age; Griffiths’ model [42], allowing for a linear FOI
increase with age; and Grenfell and Anderson’s model [43] with polynomial functions,
allowing for a varying FOI over age. We implemented all three models in the framework
of generalized linear models (GLM) (Table S1), as suggested by Hens et al. [31]. We
compared the FOI models regarding the Akaike information criterion (AIC) to determine
the best-fitting model.

2.5. Regression Analysis

We constructed two binary logistic regression models to obtain the odds ratios (OR)
for IgG (model 1) and IgM (model 2) seropositivity for B. burgdorferi s.1. as a function of
age, sex, migration background, education, net equivalent monthly income, body mass
index (BMI), a depression score and smoking status. For the migration background, we
used a set of indicators that considered the participant’s residence post-birth, spoken
native language, and the subjects” parents’ country of birth, as suggested by Schenk [44].
Furthermore, we defined the self-reported education levels as low, intermediate, and
high, corresponding to the International Standard Classification of Education level
(ISCED97) [45]. We used the International Obesity Task Force classification for BMI [46]
and assessed the self-reported depression severity in line with the 9-question Patient
Health Questionnaire (PHQ-9) [47]. We included smoking status as a proxy for lifestyle
[48].

We imputed missing values among our independent variables using multivariate
imputation by chained equations (MICE) using the R-package “mice” [49,50]. We adjusted
the algorithm to create 73 imputations according to the proportion of incomplete cases,
with a maximum of ten iterations per imputation [51,52] with predictive mean matching
for the missing numeric values. To ensure adequate missing value imputation, we
compared the distributions of the original variable with the imputed variables,
considering the mean, standard deviations, interquartile range, and graphical comparison
of the imputations with the original data and found no relevant deviation.

We tested the assumption of linearity between the independent continuous variables
and the log odds of the outcome variable, employing the Box-Tidwell test. As the test
indicated linearity violations, we considered fractional polynomial (FP) functions [53],
which provide flexible parameterization to improve a model’s fit. We employed an
automated multivariable fractional polynomial (MFP) procedure [54], iteratively cycling
through the FP transformations to identify the most suitable FP function for the respective
continuous variable. In all instances, the residual deviance did not improve; therefore, we
did not consider FP in our final models. Furthermore, we considered two interaction terms
in our final model based on the literature [6,21] and exploratory data analysis: age and
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sex, as well as age and BMI, as BMI linearly increased with advancing age in our sample.
In our model for IgG serostatus, both interaction terms were not statistically significant;
therefore, we assumed no considerable interaction effect. However, the age and sex
interactions were significant in our IgM serostatus. To control for multicollinearity, we
calculated the variance inflation factor (VIF) [55]; VIF values above five indicate
considerable multicollinearity [56]. We conducted all data wrangling, analyses, and
visualization in RStudio (version 2022.02.3, Build 492; R-base, version 4.1.2 [57]).

3. Results

We analyzed 8009 participants who provided blood samples that were available for
our investigation (Table 1). The participants’ median age was 50 years (interquartile range
[IQR]: 42-60), with a maximum age of 74 years. The sample comprised 50.2% females, and
79.8% reported no migration background; 55.9% of the participants reported a high
education, and 33.5% reported a medium education. The monthly net equivalent income
was distributed relatively evenly across the quartiles; 44.7% and 35.1% of individuals had
a normal or pre-obesity body mass index (BMI), respectively. Most subjects reported
no/minimal (61.4%) or mild (22.2%) depressive symptoms. Information on smoking status
was available for 4178 subjects: 21.2% were never smokers, and 17.4% were former
smokers.

Table 1. Population characteristics and crude seropositivity for Borrelia burgdorferi s.1.

IgG Seropositive (n= IgM Seropositive (n =

Characteristics Total (N=8009) 252), Proportion (%, 76), Proportion (%, 95%
95% CI) CI)
Age
20-29 years 831 (10.4%) 23/831 (2.8; 1.8-3.7) 11/831 (1.3; 0.7-2.0)
30-39 years 767 (9.6%) 14/767 (1.8; 1.0-2.6) 5/767 (0.7; 0.2-1.1)
4049 years 2102 (26.2%) 47/2102 (2.2; 1.7-2.8)  22/2102 (1.0; 0.7-1.4)
50-59 years 2117 (26.4%) 67/2117 (3.2, 2.5-3.8)  17/2117 (0.8; 0.5-1.1)
60-69 years 1999 (25.0%) 91/1999 (4.6; 3.8-5.3)  19/1999 (1.0; 0.6-1.3)
70 years and older 193 (2.4%) 10/193 (5.2; 2.6-7.8) 2/193 (1.0; 0.0-2.2)
Sex
Male 3991 (49.8%)  181/3991 (4.5; 4.0-5.1)  41/3991 (1.0; 0.8-1.3)
Female 4018 (50.2%) 71/4018 (1.8;1.4-2.1)  35/4018 (0.9; 0.6-1.1)
Migration
Background !
No 6389 (79.8%)  217/6389 (3.4; 3.0-3.8)  58/6389 (0.9; 0.7-1.1)
Yes 1616 (20.2%) 35/1616 (2.2; 1.6-2.8)  17/1616 (1.1; 0.6-1.5)
Missing 4 (0.1%) 0/4 (0.0; 0.0-0.0) 1/4 (25.9; 0.0-60.6)

Education 2

Ongoing 172 (2.1%) 2/172 (1.2; 0.0-2.5) 3/172 (1.5; 0.1-3.4)
Low 203 (2.6%) 2/203 (1.0; 0.0-2.1) 3/203 (1.5; 0.1-2.9)
Medium 2680 (33.5%)  73/2680 (2.7;2.2-3.2)  21/2680 (0.8; 0.5-1.1)
High 4480 (55.9%)  166/4480 (3.7; 3.2-4.2) 45/4480 (1.00; 0.8-1.2)
Missing 472 (6.9%) 9/472 (1.9; 0.9-2.9) 4/463 (0.9, 0.2-1.6)
Net equivalent
monthly income
(Euro)
Median income (IQR) 2150 (1520-2917) 2150 (1633-3167) 1900 (1471-2533)
Quartile 1 1852 (23.1%)  49/1852 (2.6;2.0-3.3)  18/1852 (1.0; 0.6-1.3)
Quartile 2 1972 (24.6%)  74/1972 (3.8;3.0-4.5)  23/1972 (1.2; 0.8-1.6)
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Quartile 3 1745 (21.8%)  46/1745 (2.6;2.0-3.3)  18/1745 (1.0; 0.6-1.4)
Quartile 4 1813 (22.6%)  60/1813 (3.3;2.6-4.0)  11/1813 (0.6;0.3-0.9)
Missing 621 (7.8%) 23/621 (3.7, 2.5-5.0) 6/621 (1.0; 0.3-1.6)
Body Mass Index 3
Underweight 81 (1.0%) 1/81 (1.2; 0.0-3.3) 1/81 (1.2; 0.0-3.3)
Normal 3581 (44.7%)  128/3581 (3.6; 3.1-4.1)  37/3581 (1.0; 0.8-1.3)
Pre-obesity 2812 (35.1%)  78/2812(2.8;2.3-3.3)  30/2812 (1.1;0.7-1.4)
Obesity class I 974 (12.2%) 29/974 (3.0; 2.1-3.9) 4/974 (0.4; 0.1-0.7)
Obesity class 11 268 (3.3%) 9/268 (3.4; 1.5-5.2) 1/268 (0.4; 0.0-1.0)
Obesity class 111 125 (1.6%) 2/125 (1.6; 0.0-3.4) 2/123 (1.6; 0.0-3.5)
Missing 168 (2.1%) 5/168 (3.0; 0.8-5.1) 1/168 (0.6; 0.0-1.6)
Depression
symptoms *
None/minimal 4917 (61.4%)  183/4917 (3.7, 3.3-4.2)  49/4917 (1.0; 0.8-1.2)
Mild 1780 (22.2%)  32/1780 (1.8;1.3-2.3)  12/1780 (0.7; 0.4-1.0)
Moderate 370 (4.6%) 6/370 (1.6; 0.5-2.7) 2/370 (0.5; 0.0-1.2)
Moderately severe 134 (1.7%) 2/134 (1.5; 0.0-3.2) 2/134 (1.5; 0.0-3.2)
Severe 36 (0.4%) 0/36 (0.0; 0.0-0.0) 0/36 (0.0; 0.0-0.0)
Missing 772 (9.6%) 29/772 (3.8, 2.6-4.9) 11/772 (1.4;0.7-2.1)
Smoking status
Never 1695 (21.2%)  48/1695 (2.8;2.2-3.5)  17/1695 (1.0; 0.6-1.4)
Former 1396 (17.4%)  49/1396 (3.5;2.7-4.3)  11/1396 (0.8; 0.4-1.2)
Current 694 (8.7%) 23/694 (3.3; 2.2-4.4) 8/694 (1.2; 0.5-1.8)
Unknown 393 (4.9%) 15/393 (3.8; 2.2-5.4) 7/393 (1.8; 0.7-2.9)
Missing 3831 (47.8%)  117/3831 (3.1;2.6-3.5) 33/3831 (0.9; 0.6-1.1)

IgG = Immunoglobulin G; IgM = Immunoglobulin M. We considered a sample as seropositive for
Borrelia burgdorferi s.1. with positive or equivocal ELISA and subsequent positive immunoblot results
(MiQ12) [33]; ! Migration derived from a minimum set of indicators by Schenk et al. [44]; 2 Education
level derived according to ISCED97 [45]; ® BMI corresponding to the classification of the
International Obesity Task Force [46]; + Depression symptoms classification obtained from the 9-
question Patient Health Questionnaire (PHQ-9) [47].

All 8009 samples underwent the two-tier antibody testing procedure for IgG and IgM
antibody presence for B. burgdorferi s.l. with ELISA used as the screening test and a line
blot as the confirmatory test (Figures 1, S1 and S2). Screening for IgG, 564 (7.0%; 95% CI
6.4-7.6%) tested positive and 390 equivocal (4.9%; 95% CI 4.4-5.4%), of which 252 (26.4%;
95% CI 23.6-29.2%) were confirmed positive, resulting in a 3.1% (95% CI 2.7-3.5%) crude
IgG seropositivity (Table 2). Considering IgM testing, 160 screened positive (2.1%; 95% CI
1.8-2.4) and 124 (1.6%; 95% CI 1.3-1.9%) equivocal, of which 76 (26.8%; 95% CI 19.0-34.6%)
tested positive in the confirmatory test, resulting in a 0.9% (95% CI 0.7-1.1%) crude IgM
seropositivity. Of all 8009 samples, 15 (0.19%; 95% CI 0.1-0.31%) tested positive for both
the IgG and IgM antibodies.
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Figure 1. Alluvial diagram from two-tier sample testing for IgG and IgM antibodies against B.
burgdorferi s.l.; IgG =Immunoglobulin G; IgM =Immunoglobulin M. We used ELISA as the screening
test and a line immunoblot as the confirmatory test. ELISA-negative samples did not undergo
confirmatory testing by protocol; therefore, subsequent immunoblot testing is not applicable (N.A.).

Table 2. Total crude and weighted seropositivity for Borrelia burgdorferi s.1. by three seropositivity
algorithms.

. Weighted

0, 0,
Antibod Seropositivity Definition Crude  Crude % (95% Estimate % (95%
v Type Numbers CDn CI?

ELISA: positive or equivocal and
line blot: positive (MiQ12) 2
ELISA: positive and

252/8009  3.1(2.8-35) 3.0 (2.7-3.4)

18G line blot: positive or equivocal or 431/8009 5.4 (4.9-5.9) 5.2 (4.7-5.7)
ELISA: equivocal and line blot: positive
ELISA: positive 3 564/8009 7.0 (6.5-7.6) 6.8 (6.3-7.4)
ELISA: positive or equivocal and
line blot: positive (MiQ12) 2 76/8009 0.9 (0.7-1.2) 0.9 (0.7-1.2)
TgM ELISA: positive and
line blot: positive or equivocal or 105/8009 1.3 (1.1-1.6) 1.4 (1.2-1.7)
ELISA: equivocal and line blot: positive
ELISA: positive 3 160/8009 2.0 (1.7-2.3) 2.1(1.8-2.4)

IgG = Immunoglobulin G; IgM = Immunoglobulin M; ELISA = enzyme-linked immunosorbent
assay; ! Seropositivity weighted by the age and sex ratio of our target population (Hanover) based
on the 2020 update of the 2011 census (www.detatis.de) [36] to approximate the seropositivity for
the general population; 2 Seropositivity according to the MiQ12 standard [33]; 3 Only positive
ELISA considered regardless of line blot result.

Applying the three seropositivity definitions yielded varying proportions of
seropositivity (Table 2). Comparing the most stringent (MiQ12) with the least stringent
algorithm (ELISA only), the proportion of seropositive samples was more than doubled
for both antigens: 3.1% vs. 7.0% (IgG) and 0.9% vs. 2.0% (IgM). The weighted estimates
for the local seropositivity among the Hanoverian general population are close to the
crude proportions, with slight fluctuations in the decimal place. For Hanover, the local
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IgG seropositivity is estimated at 3.0% (95% CI 2.7-3.4), and for IgM, at 2.1% (95% CI 1.8
2.4).

Among the three models for the FOI estimation, Grenfell and Anderson’s model with
polynomial functions performed best in terms of the AIC value compared to Muench’s
and Griffith’s model (Table S1). In our estimation, the FOI represents the annual average
change in the population’s seropositivity proportion and, therefore, a mix of
seroconversion and seroreversion. Muench’s constant model estimated the FOI at
0.000637 for all ages (Table S3). Griffiths” FOI model estimated 0.000634 for individuals
aged 20-24 years and 0.000664 for the highest age group, 65-69 years. Grenfell and
Anderson’s model estimated varying FOIs over ages, with 0.0000656 for the participants
aged 20-24, then negative estimates for the subjects aged 25-39 years, then 0.0000375 for
the 4044 year-olds, increasing to 0.00317 in the participants aged 65-69 years. The
predicted seropositivity from Grenfell and Anderson’s model lies close to the observed
mean values across 10-year age groups (Figure 2), except for the age group 30-39, where
seropositivity prediction lies comparably far from the observed mean probably due to
data dispersion within the data of this age group. Overall, predicted seropositivity lies
within the 95% confidence interval (CI) of the observed values, and both the observed and
predicted seropositivity show a positive trend with advancing age, with a slight decline
in the age group 30-39, when considering the mean observed values; however, 95%
confidence intervals (CI) overlap.
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— Predicted seropositivity (95%—Cl)
- - Force of infection
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Figure 2. Observed IgG seropositivity for B. burgdorferi s.l. with the force of infection (FOI) and
model-predicted seropositivity; IgG = Immunoglobulin G; observed seropositivity presented as
error bars for 10-year age groups with mean value and 95% confidence interval; Grenfell and
Anderson’s FOI [43] presented as a dashed line, representing the average change in the population’s
seropositivity proportion. FOI model seropositivity predictions as a solid line with a 95% confidence
interval (green).

From the regression analysis, we found that while holding all other variables
constant, the odds for IgG seropositivity increased by 26% (95% CI 13-42%) for every 10-
year increase in age (Figure 3, Table S2). Compared to the females, males had 2.58 times
(95% CI 1.94-3.46) the odds for a positive IgG test result. In addition, every point increase
in BMI led to a 4% (95% CI 1-7%) reduction in odds for positive IgG serostatus.
Comparably, each point increase on the depression scale led to a 6% (95% CI 2-10%)
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reduction in odds for IgG seropositivity. We found a significant interaction between age
and sex for positive IgM serostatus (interaction model not shown): males had 1.57 (95%
CI 1.12-2.23) times the odds for positive IgM serostatus for every 10-year increase in age
compared to females. At the age of 50, the male sex effect is OR 2.09, and for the age of 70,
itis OR 3.00.

We found no indication of multicollinearity in both models [56], as the VIF remained
below 1.5.

IgG IgM
Age, 10-year
increments —— -
Sex: Female ¢ *
Sex: Male — t—
Migration background:
No (Ref.) * *
Migration background:
Yes s —— e
Education: Ongoing® -+ -
Education: Low* | —————— -
Education: Medium® * *
Education: High® e it S
Net equivalent monthly income,
100-EUR increments * .
Body Mass Index’ * .
Depression status
(PHQ-9, point increase)" * °
Smoking status: Never o o
Smoking status: Former — R
Smoking status Current —— ——
Smoking status, Unkown —t—— —_——
0 1 2 3 1 2 3 4 5 6 7 8

Odds Ratio (95% Cl)

Figure 3. Odds ratios for IgG/IgM seropositivity from logistic regression. IgG = Immunoglobulin G;
IgM = Immunoglobulin M; Ref. = reference; CI = confidence interval; Observations = 8009. We
considered a sample as seropositive for Borrelia burgdorferi s.l. with positive or equivocal ELISA
and subsequent positive immunoblot result (MiQ12) [33]; ! Migration derived from a minimum set
of indicators by Schenk et al. [44]; 2 Education level derived according to ISCED97 [45]; 3 BMI
corresponding to the classification of the International Obesity Task Force [46];  Depression status
obtained from the 9-question Patient Health Questionnaire (PHQ-9.) [47].

4. Discussion

We have conducted the largest single-site serological survey for antibodies against B.
burgdorferi s.l. in Germany. Our findings offer a valuable addition to the literature by
providing population estimates of local seropositivity, which researchers may use as a
baseline reference for future serosurveys in light of potential climate change-related shifts
in human tick exposure. We estimated Hanover's weighted local seropositivity
proportion at 3.0% (IgG) and 0.9% (IgM). Our findings confirm advancing age and male
sex as risk factors for seropositivity. In addition, we are the first to report that both
decreasing BMI and self-reported depression symptomatology are independently
associated with positive IgG serostatus. We applied three classification definitions to
determine seropositive blood samples to facilitate comparisons with (inter-) national
serosurveys, as researchers have been using different definitions [22,24,58], which
considerably affect the reported proportion of seropositivity [24], which we also
demonstrated in our work.
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4.1. Hanoverian Seropositivity in Context

For Hanover, we estimated a higher proportion of weighted IgG seropositivity (3.0%)
compared with the 2018-2020 estimates for Bonn, North Rhine-Westphalia (NRW),
Germany (2.2%, weighted) [24] and elevated IgM seropositivity (0.9% [95% CI 0.7-1.2%]
vs. 0.6% [95% CI 0.3-0.8%]), but with overlapping CI. The region around Bonn is deemed
to have an increasing tick density and infection [59,60], together with climatic changes
promoting tick activity [61], similar to Hanover. However, the Bonn study included only
subjects living in the urban core, which may have resulted in lower seropositivity due to
lower exposure to ticks. Whereas, in Hanover, we recruited individuals from suburban
city areas as well. From the literature, we conclude that federal states with lower levels of
urbanization generally have higher proportions of seropositivity, suggesting that
individuals living in rural areas are generally more exposed than urbanized individuals
are, supported by higher chances of seropositivity among smaller municipalities vs. large
municipalities [22,62]. Thus, the reduced tick exposure of Bonn (urbanization), compared
to Hanover, may have led to increased seropositivity in Hanover.

Earlier results from nationwide population-based studies, such as the German
National Health Interview and Examination Survey 1998 (BGS98) and the German Health
Interview and Examination Survey for Adults (DEGS), reported seropositivity for Lower
Saxony pooled with other states, combined into northern states. Here, the reported
seropositivity for 1997-1999 (BGS: 7.4% [95% CI 5.1-9.6%]) is comparable with our results
for Hanover (5.4% [95% CI 4.9-5.6%]) but slightly decreased compared with 20082011
(DEGS: 9.1% [95% CI 6.7-11.43%]). Compared with the aforementioned studies,
seropositivity also remained constant for Bonn compared with earlier estimates for NRW
[23]. When jointly considering these results, we found no increased seropositivity for both
regions over the last two decades, despite evidence for increasing density (Bonn, [59]) and
locally high but steady tick infection populations (Hannover, [8,14]). Consequently, we
conclude that temporal and regional increases in exposure risk, given the evident
increases in tick density and abundance as well as the proportion of infected ticks, do not
necessarily result in prompt detectable increases in seropositivity, implying that changes
in tick populations may not be suited as a direct indicator of human infection and the
resulting burden of disease.

However, we advise caution when comparing serosurveys from different locations
with no standardized population, as the age and sex distributions may differ,
complicating comparability, since both these factors considerably influence seropositivity.

4.2. Age-Specific Seropositivity

We found a contrasting age distribution of our serological profile compared with the
notified cases. A critical difference is that B. burgdorferi s.l. seropositivity underlies varying
periods of detectability, given seroconversion and seroreversion, but also lifetime
prevalence, while a case of Lyme disease is recorded once by the notification system. Our
findings indicate a relatively steady proportion of seropositive samples over the age
groups from 20 to 49, with a slight mean seropositivity decrease in the age group 30-39.
Generally, our observed age distribution aligns with the previous serological findings
from DEGS [22,63] and BGS98 [23,64]. BGS98 also reported a similar seropositivity
decrease in subjects aged 30-39, pointing towards an actual age effect and not a cohort
effect. In contrast, the notified cases of LB show a bimodal age distribution with local
incidence maxima at approximately 5-9 and 60-69 years and its lowest points at 15-19
years [6,16,25,65,66]. Although investigations of seropositivity among children and
adolescents are scarce in Germany, one study found a generally increasing trend with age,
with the highest odds in adolescents aged 14-17 years compared with children aged 3-6
years [21]. When pooling the serological results from children, adolescents, and adults,
seropositivity showed a generally increasing trend with age, with an increasing
magnitude of participants aged around 50 years and above, with no bimodal
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representation of seropositivity across age [22]. The notification data indicate a decrease
in incident cases in individuals from approximately 70 years onwards, whereas
seropositivity increased in the serosurveys.

Various factors may explain the different age distributions: the notification system
records new symptomatic clinical cases of LB [67], i.e., incidence, whereas serosurveys
especially report the serostatus, which solely indicates a previous infection and
subsequent antibody seroconversion, irrespective of past or present clinical disease. Most
symptomatic infections occur in a close temporal relationship to the infection, indicating
that the notification data may reflect the risk of new infections by age more accurately
than serostatus. Whereas, given the long-lasting detectability of antibodies [39],
serosurveys may mainly represent a cumulative effect of lifetime exposure, characterized
by the increase in higher age groups [22-24], also evident from our findings. Here,
decreasing seroreversion (waning antibodies) with age [23,68] can potentially reinforce
the cumulative representation of lifetime exposure. The mean seropositivity decrease
among individuals aged 30-39, evident from our findings and BGS98 [23], may be due to
seroreversion and a lower risk of infection in individuals aged 10-29, which we conclude
with caution from a comparatively low number of notified incident cases in this age group
[6,16].

We estimated the FOI for IgG seropositivity to gain an alternative perspective on the
age distribution. The predicted seropositivity from Grenfell and Anderson’s FOI model
offered a reasonable approximation of observed seropositivity over age, indicating an
adequate model. The slight decrease in mean seropositivity induced negative mean FOI
estimates among individuals aged 2549 years, which distinctly increased after that,
fitting the course of observed seropositivity over age. The negative FOI estimates match
our presumption that, on a population scale, individuals aged around 30-39 years may
have an elevated ratio of seroreversion to seroconversion, leading to a seemingly declined
proportion of seropositivity in this age group.

4.3. Risk Factors for Seropositivity

Our statistical analysis confirms advancing age and male sex as associated factors of
IgG seropositivity, as reported by other serosurveys [21-24]. In addition, we detected a
significant interaction between age and sex for an IgM serostatus, indicating that males
were increasingly likely to have IgM seropositivity with increasing age. We did not find
statistical evidence for decreased seropositivity among individuals with international
migration backgrounds, as similarly reported previously [21,22,24]. A Czech study [62]
reported that immigrants rather sought residence in larger cities, entailing a lower mean
risk of LB infection, as a potential explanation for comparably less prevalent tick-borne
diseases among immigrants [22,27]. Since Hanover strongly varies in its green-space areas
[69] and no accurate residence information was available for our analysis, we emphasize
the importance of including information on outdoor activities and living areas,
respectively, in future analyses.

We included the individual-level net equivalent income and education level for SES
as controversially discussed risk factors. In our analysis, both factors were not associated
with serostatus, as reported for the BGS98 and DEGS participants [23,70] or in a
Norwegian study [28]. In contrast, recent findings from a highly educated urban German
sample in Bonn found increased odds for seropositivity among highly educated
individuals compared with intermediate education [24]. However, we identified the same
trend for education in our data when interpreting the basic proportions (Table 1); no
monotone relationship between seropositivity and income can be detected over the
quartiles (Table 1). Additionally, among Slovenian Erythema migrans patients, high
education was identified as an associated factor in addition to farm-related professions,
as reported in other countries [30,71,72]. Then again, ecologic studies from the UK found
a higher incidence of LB cases associated with higher regional socioeconomic indicators
[26,27]. Congruently, a study in Munich, south Germany, demonstrated reduced green-
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space access in neighborhoods with below-average socioeconomic composition [73],
characterizing its residents as potentially subject to lower exposure. We suspect the SES
measurement method to have a particular influence on the reported findings.
Additionally, our findings indicate lower odds for seropositivity with an increasing
BMI. Physical activity (PA), including outdoor activity, may be reduced among
individuals with an elevated BMI [74-76], potentially relating to reduced PA-related tick
exposure. However, our cross-sectional study design cannot assess the cause-and-effect
direction. Similarly to BMI, we found an inverse relationship between increasing
depressive symptomatology (PHQ-9) and positive serostatus. Again, individuals with
depressive symptomatology may have been less exposed to ticks due to homestays [77].

4.4. Limitations

We identified limitations to our work. All included subjects were invited during
2014-2018; therefore, our reported seropositivity may not be utilized as a point estimate
for a particular year. Furthermore, the NAKO participants were aged 20-69 at baseline
and recruited from a somewhat urbanized area, potentially underestimating the regional
seropositivity proportions. Since NAKO is a multi-themed study, the subjects were not
asked for prior tick exposure, past diagnosis, or past/ongoing treatment for Lyme disease
or corresponding symptoms. To our knowledge, we provided the FOI estimates for B.
burgdorferi IgG-positivity for the first time and succeeded in achieving an additional view
of the age distribution of seropositivity. However, future studies could compare more
sophisticated FOI models, incorporating new seroreversion insights and exposure
differences between population groups, e.g., sex-specific differences.

5. Conclusions

In conclusion, our work offers a recent baseline estimate of past human infection with
B. burgdorferi s.1., complementing comprehensive tick abundance data for Hanover. The
estimated local seropositivity is similar to previously aggregated information for the
northern German federal states, indicating that a high local tick infection proportion does
not necessarily result in elevated local seropositivity proportions. We found different
proportions of seropositivity with age and sex (IgG and IgM), implying the need for risk
communication for specific population groups, especially men and adults aged 50 and
above. The relationship between BMI and depression and IgG serostatus suggests that
healthier individuals are more likely to have past tick exposure, resulting in positive
serostatus. Future investigations are required to unravel debated but potentially
interwoven risk factors, i.e., socioeconomics, profession, outdoor activities, and tick
exposure, to characterize the infection risk profile over age, including children and
adolescents, for risk communication, and to monitor potentially changing climate-
induced infection risk, resulting in a public health burden.
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https://www.mdpi.com/article/10.3390/microorganisms10112286/s1, Figure S1: Flowchart from
two-tier sample testing for IgG antibodies against B. burgdorferi s.1.; Figure S2: Flowchart from two-
tier sample testing for IgM antibodies against B. burgdorferi s.1.; Table S1: Implementation and
comparison of force of infection (FOI) models; Table S2. Odds ratios for IgG/IgM seropositivity from
logistic regression; Table S3: Estimated mean force of infection (FOI) for IgG seropositivity against
B. burgdorferi s.1.
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Table S1. Implementation and comparison of force of infection (FOI) models.

GLM Implementation in
R Programming Language 2
glm(cbind(Positive, Total-Positive) ~ 1,
offset=log(Age), family = binomial(link = 200.55
“cloglog”))
glm(cbind(Total-,Positive) ~ -1 + Age +
I(Age”2), family = binomial(link = “log”))
Grenfelland Im(cbind(Total-,Positive) ~ -1 +Age + [(Age”2
Anderson [4] n'(@) = fy + 26,0 + 3f5a* ¢ + i(Age’\(?)), family = bin)omial(lingk = “l(ogg”)) )
GLM: generalized linear model; AIC: Akaike information criterion; 1: linear predictor; a: age; f:
transmission parameter; ! as suggested by Hens et al. [5]; 2 The glm() call fits a generalized linear
model; Positive: vector containing seropositive counts; Total: vector containing the sum of
seropositives and seronegatives; Age: vector containing the participants’ age in years.

Model GLM FOI Formula ! AIC

Muench [1,2]  n(a) =log(B) + log(a)

Griffiths [3] n(a) = pya + B,a? 202.54

192.39

Table S2. Odds Ratios for IgG/IgM seropositivity from logistic regression.

Independent Odds Ratio for IgG Odds Ratio for IgM
Variables Seropositivity ! (95% CI) P Seropositivity ! (95% CI) P
Age, 10-year increments 1.26 (1.13-1.42) <0.001 1.07 (0.88-1.30) 0.512
Sex
Female Ref. Ref. Ref. Ref.
Male 2.58 (1.94-3.46) <0.001 1.24 (0.78-2.00) 0.362
Migration background *
No Ref. Ref. Ref. Ref.
Yes 0.71 (0.48-1.02) 0.071 1.02 (0.56-1.75) 0.947
Education 2
Ongoing 1.03 (0.24-2.97) 0.968 2.49 (0.66-7.67) 0.138
Low 0.39 (0.06-1.25) 0.188 1.62 (0.38-4.84) 0.440
Medium Ref. Ref. Ref. Ref.
High 1.22 (0.92-1.63) 0.179 1.39 (0.83-2.39) 0.223
Net equivalent monthly
income, 100-EUR 1.00 (0.99-1.00) 0.325 0.98 (0.96-1.00) 0.038
increments
Body Mass Index 3 0.96 (0.93-0.99) 0.021 0.95 (0.90-1.01) 0.105
Depression status (PHQ- —, o, ( 90_ 98 0.006 0.99 (0.93-1.05) 0.780
9, point increase) *
Smoking status
Never Ref. Ref. Ref. Ref.
Former 1.10 (0.82-1.48) 0.523 1.40 (0.81-2.42) 0.224
Current 1.05 (0.71-1.52) 0.818 1.11 (0.54-2.18) 0.765
Unknown 1.30 (0.80-2.03) 0.274 1.38 (0.59-2.95) 0.421

IgG = Immunoglobulin G; IgM = Immunoglobulin M; Ref = reference; CI = confidence interval;
Observations = 8009. We considered a sample as seropositive for Borrelia burgdorferi s.1. with positive
or equivocal ELISA and subsequent positive immunoblot result (MiQ12) [6]; ! Migration derived
from a minimum set of indicators by Schenk et al. [7]; 2 Education level derived according to
ISCED97 [8] ; 3 BMI corresponding to the classification of the International Obesity Task Force [9] ;*
Depression status obtained from the 9-question Patient Health Questionnaire (PHQ-9) [10]



Table S3. Estimated mean force of infection (FOI) for IgG seropositivity against B. burgdorferi s.1.

FOI Estimation
Age (years) Muench ! Griffiths 2 Grenfell and Anderson 3
20-24 0.000637 0.000634 0.0000656
25-29 0.000637 0.000637 -0.000153
30-34 0.000637 0.000641 -0.000230
35-39 0.000637 0.000644 -0.000167
4044 0.000637 0.000647 0.0000375
45-49 0.000637 0.000651 0.000383
50-54 0.000637 0.000654 0.000869
55-59 0.000637 0.000657 0.00150
60-64 0.000637 0.000661 0.00226
65-69 0.000637 0.000664 0.00317

The FOI represents the average annual change in the population’s seropositivity proportion. IgG =
Immunoglobulin G; ! Muench’s model [1,2] assumes constant FOI over age; 2 [3]; 3 [4], Best
performing model considering AIC.
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