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Abstract: Lyme borreliosis is the leading tick-related illness in Europe, caused by Borrelia Burgdorferi s.l.
Lower Saxony, Germany, including its capital, Hanover, has a higher proportion of infected ticks than
central European countries, justifying a research focus on the potential human consequences. The
current knowledge gap on human incident infections, particularly in Western Germany, demands
serological insights, especially regarding a potentially changing climate-related tick abundance and
activity. We determined the immunoglobulin G (IgG) and immunoglobulin M (IgM) serostatuses
for 8009 German National Cohort (NAKO) participants from Hanover, examined in 2014–2018. We
used an enzyme-linked immunosorbent assay (ELISA) as the screening and a line immunoblot as
confirmation for the Borrelia Burgdorferi s.l. antibodies. We weighted the seropositivity proportions to
estimate general population seropositivity and estimated the force of infection (FOI). Using logistic
regression, we investigated risk factors for seropositivity. Seropositivity was 3.0% (IgG) and 0.9%
(IgM). The FOI varied with age, sharply increasing in participants aged ≥40 years. We confirmed
advancing age and male sex as risk factors. We reported reduced odds for seropositivity with
increasing body mass index and depressive symptomatology, respectively, pointing to an impact of
lifestyle-related behaviors. The local proportion of seropositive individuals is comparable to previous
estimates for northern Germany, indicating a steady seroprevalence.

Keywords: borrelia burgdorferi; lyme disease; tick-borne diseases; seroepidemiologic studies;
German National Cohort; force of infection; borrelia infections

1. Introduction

Lyme borreliosis (LB), also known as Lyme disease, is the most common tick-borne
disease in Europe, with Ixodes ricinus as the predominant tick species [1,2]. Spirochaete
bacteria of the Borrelia burgdorferi sensu lato (B. burgdorferi s.l.)—a complex transmitted from
ticks to humans—can cause multisystem disease with several states of manifestation. In the
early stages of the infection, erythema migrans, a skin rash circling the tick bite, is the most
frequent symptom. Other clinical manifestations at advanced stages are neuroborreliosis or
Lyme arthritis [3]. However, 5% of tick-bitten humans seroconvert, and 2% of the tick-bitten
develop clinical disease [4].

In Germany, LB is a notifiable infection in nine of sixteen federal states, covering
eastern Germany, Bavaria, Rhineland-Palatinate, and Saarland as the only German states in
the western region; this hampers nationwide monitoring of cases for risk assessment and
subsequent public health measures [5]. In the nine states with mandatory notification, the
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annual mean incidence from 2013 to 2017 was 33 notified cases per 100,000 persons, with
a seasonal spike from June to August and a stable incidence over the years [6]. Akmatov
et al. reported 429 LB diagnoses per 100,000 insured persons in 2019, based on recent health
insurance data [7]. Both notification and health insurance data indicate regional differences
in disease burden caused by LB. This heterogeneity is also supported by monitoring data,
suggesting a variation in tick density, distribution, and infection status with Borrelia spp.
within Germany [8–11]. Lower Saxony, a northern German federal state, seems to have a
higher average proportion of infected ticks (30.6%) than central European countries taken
together (19.3%) [8,12]. For Hanover, Lower Saxony, in 2018 and 2019, the proportion of
Borrelia spp.-infected ticks was 31.1% in mixed forests, 32.9% in urban areas, and 35.5% in
broadleaved forests [8]. Retrospectively, Hanover’s proportion of infected ticks remained
constant from 2005 to 2015 [13,14]. However, the tick density seems to have increased
between 2017 and 2018 [15]. Because of climate change, the tick season will potentially
extend from currently March to October [6,16] to include the fall and winter months due to
higher weekly mean temperatures [17], enabling tick activity if above 7 ◦C [18]. Considering
Lower Saxony, the average yearly temperature has increased in the last decades from
8.6 ◦C in 1961–1990 to 9.3 ◦C in 1981–2010 [19]. In addition, the likelihood of human
exposure might elevate due to more outdoor activities with rising air temperatures [20].

Previous research considering the notification and serological data suggests several
risk factors for human seropositivity, with advancing age and male sex as influential fac-
tors [21–24]. However, surveillance and health insurance data display a more complex rep-
resentation of the age distribution: a bimodal distribution of cases over age with an elevated
incidence and diagnoses in children aged 5 to 9 years and adults aged 50 to 69 [6,16,25].
Compared with females, males are more affected in childhood and less in adulthood.
Furthermore, existing research has not yet clarified the role of socioeconomic status (SES)
conclusively, as the studies use a different methodology. For example, the use of income on
the neighborhood/municipality level versus the use of education level on the individual
level found differing results [24,26–30]. The interrelationship between SES, living environ-
ment, profession, and lifestyle, including recreational activity, may affect tick exposure,
and, therefore, past infections are reflected in part by the serostatus.

We derived three epidemiological objectives in order to fill the existing research gaps:
First, we aimed to estimate B. burgdorferi s.l. seropositivity in the general adult population
of Hanover—a city with no active public health surveillance of LB or recent serosurveys
but with abundant tick data, as mentioned above. Here, a comprehensive serological study
can offer insights into local seropositivity and a baseline for future serosurveys, considering
potential climate-related exposure shifts. Second, we aimed to estimate the serology-
based force of infection (FOI), the rate at which the susceptible acquire an infection [31]
with B. burgdorferi s.l., to provide a different perspective on the age distribution and risk
of seropositivity. Finally, we used extensive German National Cohort (NAKO) data to
evaluate the acknowledged and debated risk factors.

2. Materials and Methods
2.1. Study Sample

We investigated data from 8009 German National Cohort (NAKO) participants ex-
amined at the study center in Hanover between October 2014 and November 2018 [32].
The study center invited people aged 20 to 69 years randomly drawn into 10-year age
groups from population registries with primary residences in Hanover. We oversampled
the age groups 40 and above. After providing written informed consent, the participants
underwent comprehensive standardized examinations, including health-related interviews,
self-administered questionnaires, physical and medical examinations, and provided bioma-
terials, including a 65 mL blood sample per participant drawn by a study assistant. The
sample collection and subsequent processing were subject to strict standardization and took
a maximum period of 2 h. All samples were aliquoted and frozen at −80 ◦C at the Hanover
Unified Biobank, located within the same building. Eligibility for study participation was
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irrespective of their health condition, as long as the invited participant was able to provide
written informed consent, reach the study center independently, and participate in most
examinations. For travel expense compensation, study personnel offered EUR 10 to each
participant at the end of the examinations.

2.2. Blood Sample Analyses

A DIN EN ISO (German Institute for Standardization/International Standardization
Organization/European standard) 15,189 accredited and ISO 9001 certified contract labora-
tory conducted the serological analyses of blood samples for immunoglobulin G (IgG) and
immunoglobulin M (IgM) antibodies against B. burgdorferi s.l. on our behalf. For transport
to the external laboratory in July 2020, the samples were packaged with dry ice, and tem-
perature logs ensured an adequate temperature during transportation. The samples were
stored at −20 ◦C at the laboratory before processing. The laboratory performed a two-tier
antibody testing procedure consisting of an enzyme-linked immunosorbent assay (ELISA)
as a screening test and a line blot immunoassay (line blot) as a confirmatory test in case
of positive or equivocal ELISA results, in line with the current microbiologic-infectiologic
quality standards (MiQ12) [33].

For the ELISA screening test, our contract laboratory used the “Borrelia afzelii and VlsE
IgG Europe ELISA” and “Borrelia afzelii IgM ELISA” kits, Virotech Diagnostics GmbH, with
a >99% sensitivity (IgG and IgM) and 97% (IgG) or 98.8% (IgM) specificity, respectively.
The antigens covered by these kits were the B. burgdorferi strain ZS7, B. garinii strain PBr,
and B. afzelii strain Pko.

The screening test returned a Virotech Unit (VU) value, an arbitrary antibody quantifi-
cation scale used for the initial classification of the samples as positive (VU > 11), equivocal
(VU ≤ 11 and VU ≥ 9), or negative (VU < 9). Then, as a confirmatory test (line blot) for
the positive or equivocal ELISA results, our contract laboratory used the “WE225 Borrelia
Europe plus TpN17 LINE IgG” and “WE224 Borrelia Europe LINE IgM” kits, Virotech Diag-
nostics GmbH, with a >99.9% sensitivity and 98% specificity (IgG and IgM). The antigen
strains considered by these kits were the OpsC (p23) from B. afzelii, VlsE recombinant from
B. burgdorferi B31, p39 (BmpA) recombinant from B. afzelii PKo, DbpA (Pko) and DbpA
(PBi, PBr, A14 S) from B. bavariensis PBi and B. garinii PBr, p58 (OppA-2) recombinant
from B. bavariensis PBi, and p83/100 recombinant from B. afzelii PKo. In addition, the kits
considered the strain EBV VCA-gp125 (affinity purified) for the exclusion diagnostics of
Epstein–Barr virus.

2.3. Defining B. burgdorferi s.l. Seropositivity

We determined the IgG and IgM serostatuses for the B. burgdorferi s.l. antibodies by
applying three seropositivity algorithms independently:

1. A positive or equivocal screening test (ELISA) with a subsequent positive confirmatory
test (line blot), which corresponds to the current standard MiQ12 [33];

2. A positive screening test (ELISA) with a subsequent positive or equivocal confirmatory
test (line blot) or equivocal screening test with a positive confirmatory test; also
applied, e.g., in [22,23];

3. A positive screening test (ELISA); also applied, e.g., in [34,35].

In our work and analyses, we primarily use the definition corresponding to the
MiQ12 standard (definition 1) and report other definitions for comparability to relevant
studies from the literature. To estimate the seropositivity of the local general population in
Hanover, we weighted our sample with regard to the local age and sex distribution from
the 2020 cohort-component-based population update of the 2011 census (obtained from
www.destatis.de and accessed on 6 May 2022) [36] using the iterative proportional fitting
(raking) method employing the R-package “survey” [37,38].

www.destatis.de
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2.4. Force of Infection

We estimated the serology-based force of infection (FOI) to gain an additional view-
point on age distribution and infection risk. In our approach, the FOI reflects the balance
of seroconversion and seroreversion, reflecting the average change in the seropositivity
proportion of the population.

We considered those subjects aged 20–69 years and focused on IgG seropositivity. Our
estimation utilizes definition 1, i.e., the detection of antibodies against B. burgdorferi s.l.,
corresponding to the MiQ 12 standard (Section 2.3., definition 1). We did not proceed with
an FOI calculation for the IgM class antibodies as a short-term marker for infection due
to the non-distinct duration of serum traceability [39], the low crude proportion of IgM
positives, and no indication of varying IgM seropositivity over age, as reported before [24].
For the FOI calculation, we considered three models: Muench’s catalytic model [40,41] with
a constant FOI over age; Griffiths’ model [42], allowing for a linear FOI increase with age;
and Grenfell and Anderson’s model [43] with polynomial functions, allowing for a varying
FOI over age. We implemented all three models in the framework of generalized linear
models (GLM) (Table S1), as suggested by Hens et al. [31]. We compared the FOI models
regarding the Akaike information criterion (AIC) to determine the best-fitting model.

2.5. Regression Analysis

We constructed two binary logistic regression models to obtain the odds ratios (OR)
for IgG (model 1) and IgM (model 2) seropositivity for B. burgdorferi s.l. as a function of age,
sex, migration background, education, net equivalent monthly income, body mass index
(BMI), a depression score and smoking status. For the migration background, we used a set
of indicators that considered the participant’s residence post-birth, spoken native language,
and the subjects’ parents’ country of birth, as suggested by Schenk [44]. Furthermore, we
defined the self-reported education levels as low, intermediate, and high, corresponding to
the International Standard Classification of Education level (ISCED97) [45]. We used the
International Obesity Task Force classification for BMI [46] and assessed the self-reported
depression severity in line with the 9-question Patient Health Questionnaire (PHQ-9) [47].
We included smoking status as a proxy for lifestyle [48].

We imputed missing values among our independent variables using multivariate
imputation by chained equations (MICE) using the R-package “mice” [49,50]. We adjusted
the algorithm to create 73 imputations according to the proportion of incomplete cases,
with a maximum of ten iterations per imputation [51,52] with predictive mean matching for
the missing numeric values. To ensure adequate missing value imputation, we compared
the distributions of the original variable with the imputed variables, considering the mean,
standard deviations, interquartile range, and graphical comparison of the imputations with
the original data and found no relevant deviation.

We tested the assumption of linearity between the independent continuous variables
and the log odds of the outcome variable, employing the Box-Tidwell test. As the test indi-
cated linearity violations, we considered fractional polynomial (FP) functions [53], which
provide flexible parameterization to improve a model’s fit. We employed an automated
multivariable fractional polynomial (MFP) procedure [54], iteratively cycling through the
FP transformations to identify the most suitable FP function for the respective continuous
variable. In all instances, the residual deviance did not improve; therefore, we did not
consider FP in our final models. Furthermore, we considered two interaction terms in our
final model based on the literature [6,21] and exploratory data analysis: age and sex, as
well as age and BMI, as BMI linearly increased with advancing age in our sample. In our
model for IgG serostatus, both interaction terms were not statistically significant; therefore,
we assumed no considerable interaction effect. However, the age and sex interactions were
significant in our IgM serostatus. To control for multicollinearity, we calculated the variance
inflation factor (VIF) [55]; VIF values above five indicate considerable multicollinearity [56].
We conducted all data wrangling, analyses, and visualization in RStudio (version 2022.02.3,
Build 492; R-base, version 4.1.2 [57]).
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3. Results

We analyzed 8009 participants who provided blood samples that were available for
our investigation (Table 1). The participants’ median age was 50 years (interquartile range
[IQR]: 42–60), with a maximum age of 74 years. The sample comprised 50.2% females,
and 79.8% reported no migration background; 55.9% of the participants reported a high
education, and 33.5% reported a medium education. The monthly net equivalent income
was distributed relatively evenly across the quartiles; 44.7% and 35.1% of individuals
had a normal or pre-obesity body mass index (BMI), respectively. Most subjects reported
no/minimal (61.4%) or mild (22.2%) depressive symptoms. Information on smoking status
was available for 4178 subjects: 21.2% were never smokers, and 17.4% were former smokers.

Table 1. Population characteristics and crude seropositivity for Borrelia burgdorferi s.l.

Characteristics Total (N = 8009) IgG Seropositive (n = 252),
Proportion (%, 95% CI)

IgM Seropositive (n = 76),
Proportion (%, 95% CI)

Age
20–29 years 831 (10.4%) 23/831 (2.8; 1.8–3.7) 11/831 (1.3; 0.7–2.0)
30–39 years 767 (9.6%) 14/767 (1.8; 1.0–2.6) 5/767 (0.7; 0.2–1.1)
40–49 years 2102 (26.2%) 47/2102 (2.2; 1.7–2.8) 22/2102 (1.0; 0.7–1.4)
50–59 years 2117 (26.4%) 67/2117 (3.2; 2.5–3.8) 17/2117 (0.8; 0.5–1.1)
60–69 years 1999 (25.0%) 91/1999 (4.6; 3.8–5.3) 19/1999 (1.0; 0.6–1.3)

70 years and older 193 (2.4%) 10/193 (5.2; 2.6–7.8) 2/193 (1.0; 0.0–2.2)

Sex
Male 3991 (49.8%) 181/3991 (4.5; 4.0–5.1) 41/3991 (1.0; 0.8–1.3)

Female 4018 (50.2%) 71/4018 (1.8; 1.4–2.1) 35/4018 (0.9; 0.6–1.1)

Migration Background 1

No 6389 (79.8%) 217/6389 (3.4; 3.0–3.8) 58/6389 (0.9; 0.7–1.1)
Yes 1616 (20.2%) 35/1616 (2.2; 1.6–2.8) 17/1616 (1.1; 0.6–1.5)

Missing 4 (0.1%) 0/4 (0.0; 0.0–0.0) 1/4 (25.9; 0.0–60.6)

Education 2

Ongoing 172 (2.1%) 2/172 (1.2; 0.0–2.5) 3/172 (1.5; 0.1–3.4)
Low 203 (2.6%) 2/203 (1.0; 0.0–2.1) 3/203 (1.5; 0.1–2.9)

Medium 2680 (33.5%) 73/2680 (2.7; 2.2–3.2) 21/2680 (0.8; 0.5–1.1)
High 4480 (55.9%) 166/4480 (3.7; 3.2–4.2) 45/4480 (1.00; 0.8–1.2)

Missing 472 (6.9%) 9/472 (1.9; 0.9–2.9) 4/463 (0.9; 0.2–1.6)

Net equivalent monthly income (Euro)
Median income (IQR) 2150 (1520–2917) 2150 (1633–3167) 1900 (1471–2533)

Quartile 1 1852 (23.1%) 49/1852 (2.6; 2.0–3.3) 18/1852 (1.0; 0.6–1.3)
Quartile 2 1972 (24.6%) 74/1972 (3.8; 3.0–4.5) 23/1972 (1.2; 0.8–1.6)
Quartile 3 1745 (21.8%) 46/1745 (2.6; 2.0–3.3) 18/1745 (1.0; 0.6–1.4)
Quartile 4 1813 (22.6%) 60/1813 (3.3; 2.6–4.0) 11/1813 (0.6;0.3–0.9)
Missing 621 (7.8%) 23/621 (3.7; 2.5–5.0) 6/621 (1.0; 0.3–1.6)

Body Mass Index 3

Underweight 81 (1.0%) 1/81 (1.2; 0.0–3.3) 1/81 (1.2; 0.0–3.3)
Normal 3581 (44.7%) 128/3581 (3.6; 3.1–4.1) 37/3581 (1.0; 0.8–1.3)

Pre-obesity 2812 (35.1%) 78/2812 (2.8; 2.3–3.3) 30/2812 (1.1; 0.7–1.4)
Obesity class I 974 (12.2%) 29/974 (3.0; 2.1–3.9) 4/974 (0.4; 0.1–0.7)
Obesity class II 268 (3.3%) 9/268 (3.4; 1.5–5.2) 1/268 (0.4; 0.0–1.0)
Obesity class III 125 (1.6%) 2/125 (1.6; 0.0–3.4) 2/123 (1.6; 0.0–3.5)

Missing 168 (2.1%) 5/168 (3.0; 0.8–5.1) 1/168 (0.6; 0.0–1.6)

Depression symptoms 4

None/minimal 4917 (61.4%) 183/4917 (3.7; 3.3–4.2) 49/4917 (1.0; 0.8–1.2)
Mild 1780 (22.2%) 32/1780 (1.8; 1.3–2.3) 12/1780 (0.7; 0.4–1.0)

Moderate 370 (4.6%) 6/370 (1.6; 0.5–2.7) 2/370 (0.5; 0.0–1.2)
Moderately severe 134 (1.7%) 2/134 (1.5; 0.0–3.2) 2/134 (1.5; 0.0–3.2)

Severe 36 (0.4%) 0/36 (0.0; 0.0–0.0) 0/36 (0.0; 0.0–0.0)
Missing 772 (9.6%) 29/772 (3.8; 2.6–4.9) 11/772 (1.4; 0.7–2.1)
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Table 1. Cont.

Characteristics Total (N = 8009)
IgG Seropositive (n = 252),

Proportion (%, 95% CI)
IgM Seropositive (n = 76),

Proportion (%, 95% CI)

Smoking status
Never 1695 (21.2%) 48/1695 (2.8; 2.2–3.5) 17/1695 (1.0; 0.6–1.4)

Former 1396 (17.4%) 49/1396 (3.5; 2.7–4.3) 11/1396 (0.8; 0.4–1.2)
Current 694 (8.7%) 23/694 (3.3; 2.2–4.4) 8/694 (1.2; 0.5–1.8)

Unknown 393 (4.9%) 15/393 (3.8; 2.2–5.4) 7/393 (1.8; 0.7–2.9)
Missing 3831 (47.8%) 117/3831 (3.1; 2.6–3.5) 33/3831 (0.9; 0.6–1.1)

IgG = Immunoglobulin G; IgM = Immunoglobulin M. We considered a sample as seropositive for
Borrelia burgdorferi s.l. with positive or equivocal ELISA and subsequent positive immunoblot results (MiQ12) [33];
1 Migration derived from a minimum set of indicators by Schenk et al. [44]; 2 Education level derived according to
ISCED97 [45]; 3 BMI corresponding to the classification of the International Obesity Task Force [46]; 4 Depression
symptoms classification obtained from the 9-question Patient Health Questionnaire (PHQ-9) [47].

All 8009 samples underwent the two-tier antibody testing procedure for IgG and
IgM antibody presence for B. burgdorferi s.l. with ELISA used as the screening test and
a line blot as the confirmatory test (Figure 1, Figures S1 and S2). Screening for IgG,
564 (7.0%; 95% CI 6.4–7.6%) tested positive and 390 equivocal (4.9%; 95% CI 4.4–5.4%),
of which 252 (26.4%; 95% CI 23.6–29.2%) were confirmed positive, resulting in a 3.1%
(95% CI 2.7–3.5%) crude IgG seropositivity (Table 2). Considering IgM testing, 160 screened
positive (2.1%; 95% CI 1.8–2.4) and 124 (1.6%; 95% CI 1.3–1.9%) equivocal, of which
76 (26.8%; 95% CI 19.0–34.6%) tested positive in the confirmatory test, resulting in
a 0.9% (95% CI 0.7–1.1%) crude IgM seropositivity. Of all 8009 samples, 15 (0.19%;
95% CI 0.1–0.31%) tested positive for both the IgG and IgM antibodies.
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Figure 1. Alluvial diagram from two-tier sample testing for IgG and IgM antibodies against
B. burgdorferi s.l.; IgG = Immunoglobulin G; IgM = Immunoglobulin M. We used ELISA as the
screening test and a line immunoblot as the confirmatory test. ELISA-negative samples did
not undergo confirmatory testing by protocol; therefore, subsequent immunoblot testing is not
applicable (N.A.).
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Table 2. Total crude and weighted seropositivity for Borrelia burgdorferi s.l. by three seropositivity algorithms.

Antibody Type Seropositivity Definition Crude
Numbers Crude % (95% CI) Weighted Estimate %

(95% CI) 1

IgG

ELISA: positive or equivocal and
line blot: positive (MiQ12) 2 252/8009 3.1 (2.8–3.5) 3.0 (2.7–3.4)

ELISA: positive and
line blot: positive or equivocal or

ELISA: equivocal and line blot: positive
431/8009 5.4 (4.9–5.9) 5.2 (4.7–5.7)

ELISA: positive 3 564/8009 7.0 (6.5–7.6) 6.8 (6.3–7.4)

IgM

ELISA: positive or equivocal and
line blot: positive (MiQ12) 2 76/8009 0.9 (0.7–1.2) 0.9 (0.7–1.2)

ELISA: positive and
line blot: positive or equivocal or

ELISA: equivocal and line blot: positive
105/8009 1.3 (1.1–1.6) 1.4 (1.2–1.7)

ELISA: positive 3 160/8009 2.0 (1.7–2.3) 2.1 (1.8–2.4)

IgG = Immunoglobulin G; IgM = Immunoglobulin M; ELISA = enzyme-linked immunosorbent assay; 1 Seropos-
itivity weighted by the age and sex ratio of our target population (Hanover) based on the 2020 update of the
2011 census (www.detatis.de) [36] to approximate the seropositivity for the general population; 2 Seropositivity
according to the MiQ12 standard [33]; 3 Only positive ELISA considered regardless of line blot result.

Applying the three seropositivity definitions yielded varying proportions of seroposi-
tivity (Table 2). Comparing the most stringent (MiQ12) with the least stringent algorithm
(ELISA only), the proportion of seropositive samples was more than doubled for both
antigens: 3.1% vs. 7.0% (IgG) and 0.9% vs. 2.0% (IgM). The weighted estimates for the local
seropositivity among the Hanoverian general population are close to the crude proportions,
with slight fluctuations in the decimal place. For Hanover, the local IgG seropositivity is
estimated at 3.0% (95% CI 2.7–3.4), and for IgM, at 0.9% (95% CI 0.7–1.2).

Among the three models for the FOI estimation, Grenfell and Anderson’s model with
polynomial functions performed best in terms of the AIC value compared to Muench’s
and Griffith’s model (Table S1). In our estimation, the FOI represents the annual average
change in the population’s seropositivity proportion and, therefore, a mix of seroconversion
and seroreversion. Muench’s constant model estimated the FOI at 0.000637 for all ages
(Table S3). Griffiths’ FOI model estimated 0.000634 for individuals aged 20–24 years
and 0.000664 for the highest age group, 65–69 years. Grenfell and Anderson’s model
estimated varying FOIs over ages, with 0.0000656 for the participants aged 20–24, then
negative estimates for the subjects aged 25–39 years, then 0.0000375 for the 40–44 year-olds,
increasing to 0.00317 in the participants aged 65–69 years. The predicted seropositivity
from Grenfell and Anderson’s model lies close to the observed mean values across 10-year
age groups (Figure 2), except for the age group 30–39, where seropositivity prediction lies
comparably far from the observed mean probably due to data dispersion within the data of
this age group. Overall, predicted seropositivity lies within the 95% confidence interval (CI)
of the observed values, and both the observed and predicted seropositivity show a positive
trend with advancing age, with a slight decline in the age group 30–39, when considering
the mean observed values; however, 95% confidence intervals (CI) overlap.

From the regression analysis, we found that while holding all other variables constant,
the odds for IgG seropositivity increased by 26% (95% CI 13–42%) for every 10-year
increase in age (Figure 3, Table S2). Compared to the females, males had 2.58 times
(95% CI 1.94–3.46) the odds for a positive IgG test result. In addition, every point increase in
BMI led to a 4% (95% CI 1–7%) reduction in odds for positive IgG serostatus. Comparably,
each point increase on the depression scale led to a 6% (95% CI 2–10%) reduction in odds
for IgG seropositivity. We found a significant interaction between age and sex for positive
IgM serostatus (interaction model not shown): males had 1.57 (95% CI 1.12–2.23) times the
odds for positive IgM serostatus for every 10-year increase in age compared to females. At
the age of 50, the male sex effect is OR 2.09, and for the age of 70, it is OR 3.00.

www.detatis.de
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Figure 3. Odds ratios for IgG/IgM seropositivity from logistic regression. IgG = Immunoglobulin
G; IgM = Immunoglobulin M; Ref. = reference; CI = confidence interval; Observations = 8009. We
considered a sample as seropositive for Borrelia burgdorferi s.l. with positive or equivocal ELISA
and subsequent positive immunoblot result (MiQ12) [33]; 1 Migration derived from a minimum
set of indicators by Schenk et al. [44]; 2 Education level derived according to ISCED97 [45]; 3 BMI
corresponding to the classification of the International Obesity Task Force [46]; 4 Depression status
obtained from the 9-question Patient Health Questionnaire (PHQ-9.) [47].
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We found no indication of multicollinearity in both models [56], as the VIF remained
below 1.5.

4. Discussion

We have conducted the largest single-site serological survey for antibodies against
B. burgdorferi s.l. in Germany. Our findings offer a valuable addition to the literature
by providing population estimates of local seropositivity, which researchers may use as
a baseline reference for future serosurveys in light of potential climate change-related
shifts in human tick exposure. We estimated Hanover’s weighted local seropositivity
proportion at 3.0% (IgG) and 0.9% (IgM). Our findings confirm advancing age and male sex
as risk factors for seropositivity. In addition, we are the first to report that both decreasing
BMI and self-reported depression symptomatology are independently associated with
positive IgG serostatus. We applied three classification definitions to determine seropositive
blood samples to facilitate comparisons with (inter-) national serosurveys, as researchers
have been using different definitions [22,24,58], which considerably affect the reported
proportion of seropositivity [24], which we also demonstrated in our work.

4.1. Hanoverian Seropositivity in Context

For Hanover, we estimated a higher proportion of weighted IgG seropositivity (3.0%)
compared with the 2018–2020 estimates for Bonn, North Rhine-Westphalia (NRW), Ger-
many (2.2%, weighted) [24] and elevated IgM seropositivity (0.9% [95% CI 0.7–1.2%] vs.
0.6% [95% CI 0.3–0.8%]), but with overlapping CI. The region around Bonn is deemed
to have an increasing tick density and infection [59,60], together with climatic changes
promoting tick activity [61], similar to Hanover. However, the Bonn study included only
subjects living in the urban core, which may have resulted in lower seropositivity due to
lower exposure to ticks. Whereas, in Hanover, we recruited individuals from suburban
city areas as well. From the literature, we conclude that federal states with lower levels
of urbanization generally have higher proportions of seropositivity, suggesting that in-
dividuals living in rural areas are generally more exposed than urbanized individuals
are, supported by higher chances of seropositivity among smaller municipalities vs. large
municipalities [22,62]. Thus, the reduced tick exposure of Bonn (urbanization), compared
to Hanover, may have led to increased seropositivity in Hanover.

Earlier results from nationwide population-based studies, such as the German National
Health Interview and Examination Survey 1998 (BGS98) and the German Health Interview and
Examination Survey for Adults (DEGS), reported seropositivity for Lower Saxony pooled
with other states, combined into northern states. Here, the reported seropositivity for
1997–1999 (BGS: 7.4% [95% CI 5.1–9.6%]) is comparable with our results for Hanover
(5.4% [95% CI 4.9–5.6%]) but slightly decreased compared with 2008–2011 (DEGS: 9.1%
[95% CI 6.7–11.43%]). Compared with the aforementioned studies, seropositivity also
remained constant for Bonn compared with earlier estimates for NRW [23]. When jointly
considering these results, we found no increased seropositivity for both regions over the last
two decades, despite evidence for increasing density (Bonn, [59]) and locally high but steady
tick infection populations (Hannover, [8,14]). Consequently, we conclude that temporal
and regional increases in exposure risk, given the evident increases in tick density and
abundance as well as the proportion of infected ticks, do not necessarily result in prompt
detectable increases in seropositivity, implying that changes in tick populations may not be
suited as a direct indicator of human infection and the resulting burden of disease.

However, we advise caution when comparing serosurveys from different locations
with no standardized population, as the age and sex distributions may differ, complicating
comparability, since both these factors considerably influence seropositivity.

4.2. Age-Specific Seropositivity

We found a contrasting age distribution of our serological profile compared with
the notified cases. A critical difference is that B. burgdorferi s.l. seropositivity underlies
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varying periods of detectability, given seroconversion and seroreversion, but also lifetime
prevalence, while a case of Lyme disease is recorded once by the notification system.
Our findings indicate a relatively steady proportion of seropositive samples over the age
groups from 20 to 49, with a slight mean seropositivity decrease in the age group 30–39.
Generally, our observed age distribution aligns with the previous serological findings from
DEGS [22,63] and BGS98 [23,64]. BGS98 also reported a similar seropositivity decrease in
subjects aged 30–39, pointing towards an actual age effect and not a cohort effect. In contrast,
the notified cases of LB show a bimodal age distribution with local incidence maxima at
approximately 5–9 and 60–69 years and its lowest points at 15–19 years [6,16,25,65,66].
Although investigations of seropositivity among children and adolescents are scarce in
Germany, one study found a generally increasing trend with age, with the highest odds in
adolescents aged 14–17 years compared with children aged 3–6 years [21]. When pooling
the serological results from children, adolescents, and adults, seropositivity showed a
generally increasing trend with age, with an increasing magnitude of participants aged
around 50 years and above, with no bimodal representation of seropositivity across age [22].
The notification data indicate a decrease in incident cases in individuals from approximately
70 years onwards, whereas seropositivity increased in the serosurveys.

Various factors may explain the different age distributions: the notification system
records new symptomatic clinical cases of LB [67], i.e., incidence, whereas serosurveys
especially report the serostatus, which solely indicates a previous infection and subsequent
antibody seroconversion, irrespective of past or present clinical disease. Most symptomatic
infections occur in a close temporal relationship to the infection, indicating that the notifi-
cation data may reflect the risk of new infections by age more accurately than serostatus.
Whereas, given the long-lasting detectability of antibodies [39], serosurveys may mainly
represent a cumulative effect of lifetime exposure, characterized by the increase in higher
age groups [22–24], also evident from our findings. Here, decreasing seroreversion (wan-
ing antibodies) with age [23,68] can potentially reinforce the cumulative representation
of lifetime exposure. The mean seropositivity decrease among individuals aged 30–39,
evident from our findings and BGS98 [23], may be due to seroreversion and a lower risk of
infection in individuals aged 10–29, which we conclude with caution from a comparatively
low number of notified incident cases in this age group [6,16].

We estimated the FOI for IgG seropositivity to gain an alternative perspective on the
age distribution. The predicted seropositivity from Grenfell and Anderson’s FOI model
offered a reasonable approximation of observed seropositivity over age, indicating an
adequate model. The slight decrease in mean seropositivity induced negative mean FOI
estimates among individuals aged 25–49 years, which distinctly increased after that, fitting
the course of observed seropositivity over age. The negative FOI estimates match our
presumption that, on a population scale, individuals aged around 30–39 years may have
an elevated ratio of seroreversion to seroconversion, leading to a seemingly declined
proportion of seropositivity in this age group.

4.3. Risk Factors for Seropositivity

Our statistical analysis confirms advancing age and male sex as associated factors of
IgG seropositivity, as reported by other serosurveys [21–24]. In addition, we detected a
significant interaction between age and sex for an IgM serostatus, indicating that males
were increasingly likely to have IgM seropositivity with increasing age. We did not find
statistical evidence for decreased seropositivity among individuals with international
migration backgrounds, as similarly reported previously [21,22,24]. A Czech study [62]
reported that immigrants rather sought residence in larger cities, entailing a lower mean risk
of LB infection, as a potential explanation for comparably less prevalent tick-borne diseases
among immigrants [22,27]. Since Hanover strongly varies in its green-space areas [69]
and no accurate residence information was available for our analysis, we emphasize the
importance of including information on outdoor activities and living areas, respectively, in
future analyses.
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We included the individual-level net equivalent income and education level for SES
as controversially discussed risk factors. In our analysis, both factors were not associated
with serostatus, as reported for the BGS98 and DEGS participants [23,70] or in a Norwegian
study [28]. In contrast, recent findings from a highly educated urban German sample in
Bonn found increased odds for seropositivity among highly educated individuals compared
with intermediate education [24]. However, we identified the same trend for education in
our data when interpreting the basic proportions (Table 1); no monotone relationship be-
tween seropositivity and income can be detected over the quartiles (Table 1). Additionally,
among Slovenian Erythema migrans patients, high education was identified as an associ-
ated factor in addition to farm-related professions, as reported in other countries [30,71,72].
Then again, ecologic studies from the UK found a higher incidence of LB cases associated
with higher regional socioeconomic indicators [26,27]. Congruently, a study in Munich,
south Germany, demonstrated reduced green-space access in neighborhoods with below-
average socioeconomic composition [73], characterizing its residents as potentially subject
to lower exposure. We suspect the SES measurement method to have a particular influence
on the reported findings.

Additionally, our findings indicate lower odds for seropositivity with an increasing
BMI. Physical activity (PA), including outdoor activity, may be reduced among individuals
with an elevated BMI [74–76], potentially relating to reduced PA-related tick exposure. How-
ever, our cross-sectional study design cannot assess the cause-and-effect direction. Similarly
to BMI, we found an inverse relationship between increasing depressive symptomatology
(PHQ-9) and positive serostatus. Again, individuals with depressive symptomatology may
have been less exposed to ticks due to homestays [77].

4.4. Limitations

We identified limitations to our work. All included subjects were invited during
2014–2018; therefore, our reported seropositivity may not be utilized as a point estimate
for a particular year. Furthermore, the NAKO participants were aged 20–69 at baseline
and recruited from a somewhat urbanized area, potentially underestimating the regional
seropositivity proportions. Since NAKO is a multi-themed study, the subjects were not
asked for prior tick exposure, past diagnosis, or past/ongoing treatment for Lyme dis-
ease or corresponding symptoms. To our knowledge, we provided the FOI estimates for
B. burgdorferi IgG-positivity for the first time and succeeded in achieving an additional
view of the age distribution of seropositivity. However, future studies could compare
more sophisticated FOI models, incorporating new seroreversion insights and exposure
differences between population groups, e.g., sex-specific differences.

5. Conclusions

In conclusion, our work offers a recent baseline estimate of past human infection
with B. burgdorferi s.l., complementing comprehensive tick abundance data for Hanover.
The estimated local seropositivity is similar to previously aggregated information for
the northern German federal states, indicating that a high local tick infection proportion
does not necessarily result in elevated local seropositivity proportions. We found dif-
ferent proportions of seropositivity with age and sex (IgG and IgM), implying the need
for risk communication for specific population groups, especially men and adults aged
50 and above. The relationship between BMI and depression and IgG serostatus suggests
that healthier individuals are more likely to have past tick exposure, resulting in positive
serostatus. Future investigations are required to unravel debated but potentially interwo-
ven risk factors, i.e., socioeconomics, profession, outdoor activities, and tick exposure, to
characterize the infection risk profile over age, including children and adolescents, for
risk communication, and to monitor potentially changing climate-induced infection risk,
resulting in a public health burden.



Microorganisms 2022, 10, 2286 12 of 15

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms10112286/s1, Figure S1: Flowchart from two-tier
sample testing for IgG antibodies against B. burgdorferi s.l.; Figure S2: Flowchart from two-tier sample
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